The influence of membrane ion-permselectivity on electrokinetic concentration enrichment in membrane-based preconcentration units.
نویسندگان
چکیده
The performance of nanoporous hydrogel microplugs with varying surface charge density is described in concentrating charged analytes electrokinetically in a microfluidic device. A neutral hydrogel plug with a mean pore size smaller than the size of charged analytes acts as a simple size-exclusion membrane. The presence of fixed charges on the backbone of a nanoporous hydrogel creates ion-permselectivity which results in charge-selective transport through the hydrogel. This leads to the development of concentration polarization (CP) in the adjoining bulk electrolyte solutions under the influence of an applied electrical field. CP strongly affects the distribution of the local electrical field strength, in particular, in the vicinity of the hydrogel plug which can significantly reduce the concentration enrichment factors compared to the neutral hydrogel. A theoretical model and simulations are presented, together with experimental data, to explain the interplay of hydrogel or membrane cation-selectivity, electrical field-induced CP, and the distribution of the local electrical field strength with respect to concentration enrichment of negatively charged analytes at the cathodic membrane-solution interface.
منابع مشابه
Transient effects on microchannel electrokinetic filtering with an ion-permselective membrane.
The electrokinetics and hydrodynamics in a hybrid microfluidic/nanofluidic pore network configuration and its effect on the concentration enrichment of charged analytes are described. A hydrogel microplug, photopolymerized in a microfluidic channel, with negative surface charge serves as a nanoporous membrane and dictates the electrokinetic behavior within the adjoining microchannel compartment...
متن کاملThin Film Heterogeneous Ion Exchange Membranes Prepared by Interfacial Polymerization of PAA-co-Iron-Nickel Oxide Nanoparticles on Polyvinylchloride Based Substrate
In this research thin film heterogeneous cation exchange membrane was prepared by interfacial polymerization of polyacrylic acid-co-iron nickel oxide nanoparticle son PVC based substrate. Spectra analysis confirmed graft polymerization conclusively. The SEM images showed that polymerized layer covers the membranes by simple gel network entanglement. Results exhibited that membrane water content...
متن کاملForce fields of charged particles in micro-nanofluidic preconcentration systems
Electrokinetic concentration devices based on the ion concentration polarization (ICP) phenomenon have drawn much attention due to their simple setup, high enrichment factor, and easy integration with many subsequent processes, such as separation, reaction, and extraction etc. Despite significant progress in the experimental research, fundamental understanding and detailed modeling of the preco...
متن کاملElectrodialysis Heterogeneous Anion Exchange Membranes Filled with TiO2 Nanoparticles: Membranes' Fabrication and Characterization
In the current research, polyvinylchloride based mixed matrix heterogeneous anion exchange membranes were prepared by a solution casting technique. Titanium dioxide nanoparticles were also utilized as inorganic filler additive in the membrane fabrication. The effect of TiO2 nanoparticles concentration in the casting solution on the membrane physico-chemical properties was studied. Membrane wate...
متن کاملCapillary-valve-based fabrication of ion-selective membrane junction for electrokinetic sample preconcentration in PDMS chip.
In this paper, we report a novel method for fabricating ion-selective membranes in poly(dimethylsiloxane) (PDMS)/glass-based microfluidic preconcentrators. Based on the concept of capillary valves, this fabrication method involves filling a lithographically patterned junction between two microchannels with an ion-selective material such as Nafion resin; subsequent curing results in a high aspec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 8 7 شماره
صفحات -
تاریخ انتشار 2008